organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-[(tert-Butoxycarbonyl)azanediyl]dipropanoic acid

Yuan Tao,^a Yu-Feng Liang,^a Xiao-Qiang Guo,^b Zhi-Hua Mao^c and Qing-Rong Qi^a*

^aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, ^bFaculty of Biotechnology Industry, Chengdu University, Chengdu 610106, People's Republic of China, and ^cThe Center for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: gigingronghh@yahoo.com.cn

Received 7 May 2009; accepted 19 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.171; data-to-parameter ratio = 14.9.

The title compound, $C_{11}H_{19}NO_6$, is an important intermediate for the synthesis of cephalosporin derivatives. The N atom is in a planar configuration. In the crystal, molecules are linked into zigzag layers parallel to (100) by $O-H \cdots O$ hydrogen bonds.

Related literature

The condensation of the title compound with cephalosporin may improve the pharmacokinetics, see: Sakagami et al. (1990, 1991); Uhrich & Frechet (1992).

Experimental

Crystal data C11H19NO6

 $M_r = 261.27$

Orthorhombic, Pbca	Z = 8
a = 10.632 (2) Å	Mo $K\alpha$ radiation
b = 14.559 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 18.257 (4) Å	$T = 292 { m K}$
$V = 2826.1 (11) \text{ Å}^3$	$0.60 \times 0.50 \times 0.44 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4	1050 reflections with I

Enrai–Nonius CAD-4	1050 reflections with I >
diffractometer	$R_{\rm int} = 0.008$
Absorption correction: none	3 standard reflections
2979 measured reflections	every 200 reflections
2601 independent reflections	intensity decay: 1.3%
-	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$wR(F^2) = 0.171$	independent and constrained
S = 1.09	refinement
2601 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
175 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

 $> 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
O3−H3O···O4 ⁱ	0.98 (5)	1.68 (5)	2.653 (4)	174 (4)
$O5-H5O\cdots O2^{ii}$	0.94 (5)	1.70 (5)	2.628 (3)	168 (4)

Symmetry codes: (i) -x, -y, -z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the National 973 Project under grant No. 2004CB518800.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2799).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic
- Association Meeting, Pittsburgh, Abstract PA 104.
- Sakagami, K., Atsumi, K. & Tamura, A. (1990). J. Antibiot. 8, 1047-1050. Sakagami, K., Atsumi, K. & Yamamoto, Y. (1991). Chem. Pharm. Bull. 39,
- 2433-2436.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Uhrich, K. E. & Frechet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1623-1630.

supplementary materials

Acta Cryst. (2009). E65, o1408 [doi:10.1107/S1600536809018911]

3,3'-[(tert-Butoxycarbonyl)azanediyl]dipropanoic acid

Y. Tao, Y.-F. Liang, X.-Q. Guo, Z.-H. Mao and Q.-R. Qi

Comment

The title compound is an important intermediate for the synthesis of a new type of cephalosporin. The condensation of the title compound with cephalosporin may improve the pharmacokinetics of the cephalosporin (Sakagami *et al.*, 1990). It has two carboxylic acid functionalities that are available for the condensation with the amino group of cephalosporin, while the protected amine can be easily activated by deprotection, so that it can be condensed with the carboxyl of cephalosporin. The condensation with cephalosporin may increase the drug concentration, control the release of drug and reduce the drug toxicity (Uhrich & Frechet, 1992; Sakagami *et al.*, 1991).

The N atom has a trigonal planar configuration, with sum of bond angles around N1 being 359.8 °. The molecules are linked into zigzag layers parallel to the (100) by O—H…O hydrogen bonds.

Experimental

Dimethyl 3,3'-azanediyldipropanoate (5.67g, 30 mol) was treated with NaOH solution (4.0g NaOH in 20 ml H₂O) and stirred at room temperature for 2 h. Then a solution of $(Boc)_2O$ (7.0g, 32mmol) (Boc is tert-butoxycarbonyl) in tertiary butyl alcohol (10 ml) was added dropwise at 283 K. The contents were stirred for 30 min at room temperature. The reaction mixture was washed with n-pentane (10 ml × 3) and the aqueous layer was adjusted to a pH of 1.0 with hydrochloric acid and extracted with ethyl acetate. The organic layer was dried (MgSO₄) and evaporated in vacuo and recrystallized in cyclohexane-ethyl acetate to get colourless crystals.

Refinement

Hydroxyl H atoms were located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C-H = 0.96-0.97 Å) and refined using a riding model, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

3,3'-[(tert-Butoxycarbonyl)azanediyl]dipropanoic acid

Crystal data	
C ₁₁ H ₁₉ NO ₆	$F_{000} = 1120$
$M_r = 261.27$	$D_{\rm x} = 1.228 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 20 reflections
a = 10.632 (2) Å	$\theta = 5.7 - 6.8^{\circ}$
<i>b</i> = 14.559 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 18.257 (4) Å	T = 292 K
$V = 2826.1 (11) \text{ Å}^3$	Block, colourless
Z = 8	$0.60 \times 0.50 \times 0.44 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.008$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 292 K	$h = -1 \rightarrow 12$
$\omega/2-\theta$ scans	$k = -3 \rightarrow 17$
Absorption correction: none	$l = -10 \rightarrow 22$
2979 measured reflections	3 standard reflections
2601 independent reflections	every 200 reflections
1050 reflections with $I > 2\sigma(I)$	intensity decay: 1.3%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of

independent and constrained refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0701P)^2]$ where $P = (F_o^2 + 2F_o^2)/3$
$wR(F^2) = 0.171$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.09	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
2601 reflections	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
175 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0127 (17)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1690 (2)	0.18631 (13)	0.36711 (10)	0.0709 (7)
O2	0.0153 (3)	0.10681 (16)	0.31021 (11)	0.0841 (8)
O3	0.0720 (3)	-0.04162 (19)	0.08342 (15)	0.0995 (10)
H3O	0.031 (4)	-0.058 (3)	0.037 (3)	0.129 (16)*
O4	0.0484 (3)	0.09467 (16)	0.03663 (14)	0.1078 (11)
O5	0.1228 (3)	0.49187 (18)	0.26626 (13)	0.0833 (8)
H5O	0.066 (5)	0.526 (3)	0.238 (2)	0.137 (18)*
O6	0.1031 (3)	0.39281 (16)	0.17583 (15)	0.1142 (11)
N1	0.1433 (3)	0.20065 (16)	0.24663 (13)	0.0669 (8)
C1	0.2392 (4)	0.1974 (2)	0.48679 (17)	0.0898 (12)
H1A	0.3223	0.1849	0.4687	0.135*
H1B	0.2328	0.1772	0.5367	0.135*
H1C	0.2233	0.2622	0.4843	0.135*
C2	0.1697 (4)	0.0451 (2)	0.4391 (2)	0.0981 (14)
H2A	0.1055	0.0146	0.4112	0.147*
H2B	0.1700	0.0217	0.4882	0.147*
H2C	0.2501	0.0342	0.4169	0.147*
C3	0.0128 (4)	0.1701 (3)	0.4649 (2)	0.1067 (14)
H3A	-0.0026	0.2343	0.4571	0.160*
H3B	0.0038	0.1560	0.5160	0.160*
H3C	-0.0467	0.1347	0.4371	0.160*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C4	0.1436 (4)	0.1469 (2)	0.44047 (16)	0.0686 (10)
C5	0.1046 (4)	0.1604 (2)	0.30812 (18)	0.0623 (9)
C6	0.0904 (4)	0.1711 (2)	0.17744 (16)	0.0688 (10)
H6A	0.1042	0.2185	0.1409	0.083*
H6B	0.0003	0.1629	0.1829	0.083*
C7	0.1484 (3)	0.0821 (2)	0.15127 (17)	0.0747 (11)
H7A	0.2365	0.0922	0.1400	0.090*
H7B	0.1437	0.0368	0.1902	0.090*
C8	0.0838 (4)	0.0459 (3)	0.08533 (19)	0.0719 (10)
C9	0.2554 (4)	0.2605 (2)	0.24626 (18)	0.0762 (10)
H9A	0.2844	0.2675	0.1962	0.091*
H9B	0.3220	0.2308	0.2738	0.091*
C10	0.2318 (4)	0.3548 (2)	0.27853 (18)	0.0762 (11)
H10A	0.1970	0.3475	0.3273	0.091*
H10B	0.3116	0.3865	0.2833	0.091*
C11	0.1451 (4)	0.4125 (2)	0.2344 (2)	0.0732 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0897 (19)	0.0642 (13)	0.0588 (12)	-0.0127 (13)	-0.0146 (12)	-0.0004 (10)
O2	0.097 (2)	0.0806 (16)	0.0750 (16)	-0.0276 (16)	-0.0109 (14)	-0.0061 (12)
O3	0.152 (3)	0.0724 (19)	0.0737 (17)	0.0156 (18)	-0.0244 (17)	-0.0096 (14)
O4	0.164 (3)	0.0759 (17)	0.0831 (17)	0.0102 (17)	-0.0439 (18)	-0.0010 (15)
O5	0.094 (2)	0.0750 (17)	0.0803 (16)	0.0181 (15)	-0.0104 (14)	0.0071 (14)
O6	0.153 (3)	0.0836 (18)	0.106 (2)	0.0274 (18)	-0.053 (2)	-0.0026 (16)
N1	0.078 (2)	0.0626 (15)	0.0595 (16)	-0.0032 (16)	-0.0056 (15)	0.0027 (14)
C1	0.094 (3)	0.103 (3)	0.073 (2)	0.004 (2)	-0.017 (2)	-0.012 (2)
C2	0.132 (4)	0.072 (3)	0.090 (3)	0.002 (3)	-0.012 (3)	0.015 (2)
C3	0.091 (4)	0.132 (3)	0.097 (3)	0.009 (3)	0.013 (3)	-0.017 (3)
C4	0.080 (3)	0.069 (2)	0.0572 (18)	0.002 (2)	-0.0009 (18)	-0.0036 (17)
C5	0.066 (3)	0.054 (2)	0.067 (2)	-0.0066 (19)	-0.0100 (19)	-0.0035 (17)
C6	0.080 (3)	0.065 (2)	0.060 (2)	0.011 (2)	-0.0078 (17)	-0.0011 (16)
C7	0.073 (3)	0.082 (2)	0.069 (2)	0.014 (2)	-0.0123 (18)	-0.0100 (18)
C8	0.081 (3)	0.071 (3)	0.064 (2)	0.025 (2)	-0.0029 (19)	-0.009 (2)
C9	0.069 (3)	0.075 (2)	0.084 (2)	0.005 (2)	-0.0019 (19)	0.014 (2)
C10	0.078 (3)	0.064 (2)	0.087 (2)	-0.010 (2)	-0.023 (2)	0.0155 (17)
C11	0.087 (3)	0.062 (2)	0.071 (2)	-0.006 (2)	-0.011 (2)	0.0116 (19)

	Geometric	parameters	(Å,	9)
--	-----------	------------	-----	----

O1—C5	1.331 (4)	C2—H2B	0.96
O1—C4	1.482 (3)	C2—H2C	0.96
O2—C5	1.229 (4)	C3—C4	1.499 (5)
O3—C8	1.281 (4)	С3—НЗА	0.96
O3—H3O	0.98 (5)	С3—Н3В	0.96
O4—C8	1.199 (4)	С3—Н3С	0.96
O5—C11	1.315 (4)	C6—C7	1.513 (4)
О5—Н5О	0.94 (5)	С6—Н6А	0.97

O6—C11	1.193 (4)	С6—Н6В	0.97
N1—C5	1.331 (4)	C7—C8	1.482 (5)
N1—C6	1.448 (4)	С7—Н7А	0.97
N1—C9	1.477 (4)	С7—Н7В	0.97
C1—C4	1.514 (5)	C9—C10	1.515 (4)
C1—H1A	0.96	С9—Н9А	0.97
C1—H1B	0.96	С9—Н9В	0.97
C1—H1C	0.96	C10—C11	1.486 (5)
C2—C4	1.508 (4)	C10—H10A	0.97
C2—H2A	0.96	C10—H10B	0.97
C5—O1—C4	121.8 (3)	O1—C5—N1	113.5 (3)
С8—О3—НЗО	108 (2)	N1—C6—C7	111.8 (3)
С11—О5—Н5О	110 (3)	N1—C6—H6A	109.3
C5—N1—C6	119.0 (3)	С7—С6—Н6А	109.3
C5—N1—C9	120.9 (3)	N1—C6—H6B	109.3
C6—N1—C9	119.0 (3)	С7—С6—Н6В	109.3
C4—C1—H1A	109.5	Н6А—С6—Н6В	107.9
C4—C1—H1B	109.5	C8—C7—C6	111.8 (3)
H1A—C1—H1B	109.5	С8—С7—Н7А	109.2
C4—C1—H1C	109.5	С6—С7—Н7А	109.2
H1A—C1—H1C	109.5	С8—С7—Н7В	109.2
H1B—C1—H1C	109.5	С6—С7—Н7В	109.2
C4—C2—H2A	109.5	H7A—C7—H7B	107.9
C4—C2—H2B	109.5	04	122.6 (3)
H2A—C2—H2B	109.5	O4—C8—C7	122.5 (4)
C4—C2—H2C	109.5	O3—C8—C7	114.9 (3)
H2A—C2—H2C	109.5	N1—C9—C10	113.5 (3)
H2B—C2—H2C	109.5	N1—C9—H9A	108.9
С4—С3—Н3А	109.5	С10—С9—Н9А	108.9
C4—C3—H3B	109.5	N1-C9-H9B	108.9
H3A-C3-H3B	109.5	C10—C9—H9B	108.9
C4—C3—H3C	109.5	Н9А—С9—Н9В	107.7
H3A—C3—H3C	109.5	C11—C10—C9	113.9 (3)
H3B—C3—H3C	109.5	C11—C10—H10A	108.8
01 - C4 - C3	110 5 (3)	C9—C10—H10A	108.8
01 - C4 - C2	109 4 (3)	C11—C10—H10B	108.8
$C_{3} - C_{4} - C_{2}$	113 4 (3)	C9—C10—H10B	108.8
01 - C4 - C1	101 2 (3)	H10A—C10—H10B	107.7
C_{3} C_{4} C_{1}	1104(3)	06-011-05	122.7 (3)
$C^2 - C^4 - C^1$	111 3 (3)	06-C11-C10	122.7(3) 125.6(3)
02 - 01 = 01	123 5 (3)	05-C11-C10	123.6(3)
02 - 05 - 01	123.0(3)		111.0 (5)
$C_{5} = 01 = C_{4} = C_{3}$	-63.2 (1)	C9-N1-C6-C7	89.6 (3)
$C_{5} = 01 = C_{4} = C_{5}$	-03.2(4)	$C_{9} = N_{1} = C_{0} = C_{7}$	39.0(3)
$C_{5} = 0_{1} = C_{4} = C_{2}$	1700(3)		30 8 (5)
$C_{1} = C_{1} = C_{1}$	177.7(5)	$C_{0} = C_{1} = C_{0} = C_{4}$	-1421(2)
$C_{4} = 0_{1} = C_{3} = 0_{2}$	4.4 (J) -177 7 (3)	$C_{0} = C_{1} = C_{0} = C_{0}$	-76 A (4)
$C_{4} = O_{1} = O_{2} = O_{1}$	-9.9(5)	C_{5} N1 C0 C10	70.4 (4) 115 0 (2)
C0	-0.0 (3)	CO-NI-C9-C10	113.9 (3)

supplementary materials

1 (4) (6) 0 (3)

O3—H3O···O4ⁱ0.98 (5)1.68 (5)2.653 (4)174 (4)O5—H5O···O2ⁱⁱ0.94 (5)1.70 (5)2.628 (3)168 (4)Symmetry codes: (i) -x, -y, -z; (ii) -x, y+1/2, -z+1/2.1.70 (5)2.628 (3)168 (4)

Fig. 2

